Limit theorems for products of positive random matrices
نویسندگان
چکیده
منابع مشابه
Limit Theorems for Spectra of Random Matrices with Martingale Structure
We study classical ensembles of real symmetric random matrices introduced by Eugene Wigner. We discuss Stein’s method for the asymptotic approximation of expectations of functions of the normalized eigenvalue counting measure of high dimensional matrices. The method is based on a differential equation for the density of the semi-circular law.
متن کاملCentral Limit Theorem for Products of Random Matrices
Using the semigroup product formula of P. Chernoff, a central limit theorem is derived for products of random matrices. Applications are presented for representations of solutions to linear systems of stochastic differential equations, and to the corresponding partial differential evolution equations. Included is a discussion of stochastic semigroups, and a stochastic version of the Lie-Trotter...
متن کاملLimit Distributions for Random Hankel, Toeplitz Matrices and Independent Products
For random selfadjoint (real symmetric, complex Hermitian, or quaternion self-dual) Toeplitz matrices and real symmetric Hankel matrices, the existence of universal limit distributions for eigenvalues and products of several independent matrices is proved. The joint moments are the integral sums related to certain pair partitions. Our method can apply to random Hankel and Toeplitz band matrices...
متن کاملEvolutionary Formalism for Products of Positive Random Matrices
Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive o...
متن کاملLimit Theorems for Sequences of Random Trees
We consider a random tree and introduce a metric in the space of trees to define the “mean tree” as the tree minimizing the average distance to the random tree. When the resulting metric space is compact we show laws of large numbers and central limit theorems for sequence of independent identically distributed random trees. As application we propose tests to check if two samples of random tree...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Probability
سال: 1997
ISSN: 0091-1798
DOI: 10.1214/aop/1023481103